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Bivariate Interpolation with Quadratic Box Splines 

By Morten Daehlen and Tom Lyche 

Abstract. Existence and uniqueness results are given for interpolation with translates 
of a bivariate, three-directional, C0-quadratic box spline over a finite polygonal region. 
A Hermite interpolation problem for a slightly more general box spline is also considered. 

1. Introduction. Recently, existence and uniqueness questions for multivariate 
interpolation have received considerable attention. See [2], [3], [8], and references 
therein. In general, we are given an n-dimensional space of functions 

S=span{qi,.. ,q$} 

on a region Q in R8. The Lagrange interpolation problem is to determine a subset 
P of Q such that the n by n collocation matrix with elements Oj (xi) is nonsingular 
for any choice of distinct x1, ... ., x' in P. We refer to this as a unisolvence problem. 

We are interested in a box spline unisolvence problem. Specifically, in this paper, 
the Oj's will be translates of one bivariate (s = 2) box spline on a uniform 3-direction 
(type 1) grid. 

Given two linearly independent vectors c1 and c2 in R2, a uniform 3-direction 
grid is constructed by drawing straight lines in the three directions c1, c2 and c1 +c2 
through all points in R2 of the form jcl + kc2, j, k E Z. We will only consider the 
standard grid G obtained by choosing c1 = dl = (1, O)T and c2 = d2 = (0,1 )T. 

(We can map any grid into the standard one by mapping cl into d' and c2 into d2.) 
The region Q will be a bounded, convex set as shown in Figure 1.1. We obtain 

any such 7 by removing two triangles of size kj and ku from the lower right and 
upper left corner of a rectangle of size n1, n2. Q is a triangle if n1 = n2 and kj = 0, 
k, = n2 or k, = 0, kj = nl. Similarly, we obtain a trapezoid, a pentagon, or a 
hexagon depending on the values of kj, ku, nl, and n2. We assume that n1 > 0, 
n2 > 0, and 0 < kj,ku < min{nl,n2}. 

The box splines of interest in this paper are piecewise polynomials on G. Given 
three integers m = (ml,m2,m3) with m1 > 0, m2 > 0, and m3 > 0, we can use 
the following simple definition 

(1. 1) B(ml m2,m3) (X, y) - Mm(x)Mm2 (y) if M3 = O. 

* flt B(MI M2m-') (x - t, y - t) dt otherwise. 

Here, Mk (t) = Mk(t I 0, 1, . . . , k) is the univariate B-spline of order k with knots 
0,1,... , k normalized to have integral equal to one. Thus, Bm is a tensor product 
B-spline if m3 = 0. 
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FIGURE 1.1 
A bounded, polygonal, convex set Q with boundary along 

a 3-direction grid 
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FIGURE 1. 2 

The Co-quadratic (1, 1, 2) box -spline (left) . The -support, 
together with -selected function values along the diagonals 

y =x and y = x -1/2, are given on the right half of the figure. 

1/3 

The relation (1.1) defines Bm for every point in R2. If we define the univariate 
B-splines to be right-continuous, i.e., we set 

f 1 if O < t < 1, 
Ml (t) = X[o,1) (t) = 0 0 otherwise, 

then the value of Bm or one of its derivatives on a grid line is obtained as the limit 
from the right in the x direction and from above in the y direction. 

We recall [1] some simple properties of Bm. The box spline Bm is a polynomial 
of degree Iml - 2 on each triangle in G, where 

Iml = ml + m2 + Mi3. 

The support of Bm is a six-sided polygon as shown in Figure 1.2 for the (1,1,2) 
case. Moreover, partial derivatives of order < ml - 2 - maxmj are continuous 
everywhere. 
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The outline of this paper is as follows. In Section 2 we give a convenient formula 
for the number of box splines which are nonzero on the interior of the region Q 
shown in Figure 1.1. Since these functions are linearly independent on 7 [1], this 
number is the dimension of the space S. In Section 3 we study the unisolvence 
problem for the quadratic box spline B(l 2). Similar problems have been studied 
in [4] (linear nonuniform) and [5] (Cl-quadratic on a 4-direction grid). In Section 
4 we consider a Hermite interpolation problem for the box spline (1, 1, k). We 
conclude the paper with an example. 

CO-quadratic box splines have been used in [9] to model objects with slope dis- 
continuities along diagonals. See also [6]. 

For results on cardinal interpolation with box splines, see [10], [7] and references 
therein. Since Q is a finite region, these results are not directly applicable. 

2. The Spline Space. Let Q be as in Figure 1.1. We are interested in the 
space 

(2.1) Sm(cj) = c,1B7 : c,,j E R} 
(inj)EI(Q) 

where 

Bim (xX y) = Bmx (- i, y -j), x, y E RI 

and 

(2.2) I((Q) = {(i, j) E Z2: BT (x, y) :& 0 for some (x, y) E f?} 

Here, Q2? is the interior of the set Q. We recall [1] that for all (x, y) E Q2? and 
any m we have 

(2.3) B B (xy)=1; 
(i,3)EZ2 

moreover, for all (i,j) e 

f BT. (x,y)dxdy = 1. 

It is convenient to indicate the location of the points in the index set I(Q) by 
drawing its convex hull [I(Q)]. The set [I(Q)] is a six-sided polygon as shown in 
Figure 2.1. The reader can verify this by tracing the location of the lower left corner 
of the support of Bm as one moves Bm along the boundary of Q. 

A convenient formula for the number of elements II(Q)J in I(Q) is given by the 
following result. 

PROPOSITION 2.1. Suppose Q C R2 is of the form indicated in Figure 1.1. 
Then 

(2.4) II(?)I = y + (ml - 1)h+ (m2 - 1)v + (M3 -1)d + g, 
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(ku, n2) (nl X n2) 

(ku ml, n2->/ _ n-,n- 

// I~ 

I . < suppBm 
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FIGURE 2.1 
Q~ ( solid),n [Im (Q)] ( dashed), and the support of Btm ( dotted) . 

where h, v and d are respectively the number of horizontal, vertical and diagonal 
lines in C 0 Q., and g the number of grid points. More precisely, 

,l= (in1 - 1)(m2 - 1) + (in1- 1)(m3 - 1) + (in2- 1)(m3 - 1), 

h = fl2 + 1, 
v = fln + 1, 

d = ni + n2 - k1 - kn + 1, 

g = (n1 + 1)(fl2 + 1) - 2k1(k1 + 1) - 2k-(k2 + 1). 

Proof. fI(Q7) is equal to the number of points in a rectangle with two corners 
cut off. In particular (cf. Figure 2.1), we have 

I(Q)I = (ni + mi + m3 - 1)(n2 +in2 + m3 - 1) 

- 3 (ki +m3 - l)(ki +m3)- (k +m3 - 3)(k +m3). 

A simple rearrangement gives (2.4). oE 

As already mentioned, the box splines used in (2.1) are linearly independent. 
Thus n = [I(Q2) is the dimension of the space Sm(u t(). 

It is of interest to consider the ordering of basis functions and interpolation 
points. A natural way would be to pick one of the three directions, say, the diagonal 
direction, and order the points in I(Q7) according to which diagonal the lower left 
corner of the support of the box spline lies on. There are 

d = d + ml - 1M -1 + 2 - 1 

diagonals in I(Q7), where d is the number of diagonals in Q~. 
We could start with all the points on the lower right diagonal moving from 

bottom left to top right along the diagonal. Then we could continue with each of 
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the diagonals above in the same way. We call this the d-ordering of I(Q). We define 
h-ordering and v-ordering in a similar way. 

Suppose now that the box splines have been ordered in some order B1, B2,..., 

B,. The next problem is to order the interpolation points x1, x2,.. ., xIn. How this 
should be done depends on the purpose. To limit the band width of the matrix 
with elements Bj(xi), one should order the xi's in a similar way as the Bj's. 

Suppose the d-ordering is used for the functions. If d > d, it is not clear how 
to choose a d-ordering for the points. One way could be as follows. We first take 
all points which are at least as close to the lower right diagonal of Q as to any 
other diagonal in Q. One would then take all points which are closer to the second 
diagonal in Q and at least as close to the second diagonal as to the third diagonal. 
Continuing in this way, we divide the points according to which diagonal strip they 
belong to. To order the points within one strip, suppose pi and p2 are two points 
in the same diagonal strip and let v1 and v2 be normals to the diagonal passing 
through pi and p2, respectively. Then pi comes before p2 if v, is below v2. If p' 
and p2 both lie on the same normal, then the point closest to the diagonal would 
be counted first. 

We end this section by stating two convenient symmetry properties of box splines 
Bm on a 3-direction grid. For all x, y E R 

(2.5) Bm (x, y) = Bm (m1 + m3 - x, m2 + m3 -Y), 

(2.6) Bm(x y) = Bm(y,x) if ml = M2. 

Here, Bm is the left-continuous version of Bm, i.e., we use left-continuous univariate 
B-splines Mk (for k = 1, M1 = X(0,1]) in (1.1). The relations (2.5) and (2.6) follow 
from (1.1) using induction on M3. Relation (2.6) is trivial for m3 = 0, and relation 
(2.5), for m3 = 0, follows from the fact that for all t and k, Mk(t 0, 1,... , k) = 

Mk(k -t I 0,1, ,I k)- 

3. C0-Quadratic Box Splines. We consider now the box spline unisolvence 
problem using the m = (1, 1, 2) box spline. This box spline is shown in Figure 1.2. 
It is a piecewise quadratic function whose support consists of 10 triangles. These 
triangles together with a sample of function values are also shown in Figure 1.2. 
The box spline B = B(l 1'2) is continuously differentiable everywhere except across 
diagonals. 

Example 3.1. Consider the unisolvence problem on the unit square Q = [0,1]2 
in R2. By (2.4) we have II(Q)I = d + g = 3 + 4 = 7 box splines overlapping Q. 
The location of the lower left corner of the seven (1,1,2) box splines overlapping 
the unit square is shown in Figure 3.1. 

Let f E Sm((Q) be given by 

f = (B1 + B2 + 2B3- 2B4 + 2B5 + B6 + B7)/2. 

Using (2.6) and the explicit values in Table 3.1, it is easily shown that f(y, x) = 

f(x,Iy) and for y > x that 

f (x, y) = (x - 3/4)2 + (y - 1/4)2 - 10/16. 



224 MORTEN DiEHLEN AND TOM LYCHE 

17 

131 ID 

~ w 
FIGURE 3.1 

The d-ordering of the seven nonzero (1, 1, 2) box splines 
on the unit square. 

TABLE 3.1 
Explicit values of the seven (1, 1, 2) box splines on the 

two triangles I and u in Figure 3.1. 

Box spline Value on I Value on u 

1 1 (y-1)2-_ (X-1)2 0 

2 lX2l_ 12 0 

3 2 (X-1)2 (y_1)2 

4 1-2X2- (y-1)2 1- 12-2 (X-1)2 

5 ~~1 y2 12 X 5 12 

6 0 1(X-1)2-2(y-1)2 

7 0 1Y2 1-2 

It follows that f vanishes identically on two circular arcs C, and Cu in Q. Thus, 

if x1x2, ... x7are chosen on Cl U C, say, 

{X1, ... *, X7} = { ( 2, ?), (1, 2 )' (?' ?)' (?' 2 )' ( 2, 1)) (1, 1)) (U. V)}, 

where (u, v) E Cl U Cu, then the matrix with elements Bj(xi) will be singular and 

the problem is not unisolvent. E1 

This example shows that it would be very hard, in general, to give necessary and 

sufficient conditions for unisolvence. Let us now restrict our attention to interpo- 

lation at grid points (i, j) E Z2. By (2.4) we have 

dimS(1l, ,2)((Q) = g+d, 

where g is the number of grid points and d the number of diagonals in Q. Thus, 

in addition to interpolation at the grid points we need to specify d interpolation 

conditions somehow. The next example shows that these points have to be chosen 

with some care. 

Example 3.2. Suppose Q is the hexagonal domain shown in Figure 3.2. This Q has 

g= 7 grid points and d= 3 diagonals. Thus, dim Sm (Q) = 10. Let x1, 2,...,x10 

be the points indicated in Figure 3.2. The three nongrid points are X2= (3/2,1/2), 
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FIGURE 3.2 
Domain Q and location of interpolation points for Example 3.2. 

X6 (3/4,5/4) and x9 = (1/2, 3/2). Ordering the box splines by diagonals and 
using the values in Figure 1.2, we obtain the following collocation matrix: 

1/2 1/2 0 0 0 0 0 0 0 0 
1/8 6/8 1/8 0 0 0 0 0 0 0 
o 1/2 1/2 0 0 0 0 0 0 0 

o o 0 1/2 1/2 0 0 0 0 0 

A o 0 0 0 1/2 1/2 0 0 0 0 
A= 0 0 0 1/4 1/4 0 1/32 7/16 1/32 

o 0 0 0 0 1/2 1/2 0 0 0 

o o 0 0 0 0 0 1/2 1/2 0 
o o 0 0 0 0 0 1/8 6/8 1/8 
o o 0 0 0 0 0 0 1/2 1/2 

A is singular since the middle diagonal block is singular. [l 
Suppose we number the diagonals 61, 62,.. , 8d in Q from bottom right to top 

left. Thus, 61 passes through the point (n1, k1). (Cf. Figure 1.1). For k = 1, 2,...., d, 

let 

Dk = {x E R2 n Q: dist(x, 6k) < X/2}, 

where for x E R2, S C R2, dist(x, S) denotes the Euclidean distance from x to the 
set S. The following theorem explains the results in Example 3.2. 

THEOREM 3. 1. Suppose Q contains g grid points and d diagonals. Let 

{X, . ... I Xg } = fUll.. *J*,Ug. V1, . .. ,Vd }, 

where u.u...gu are the grid points in Q and v1,. .., Vd are points which satisfy 
(i) vk E Dk, k = 1,2,...Id; 
(ii) at most one of vk, Vk+1 is in Dk nDk+l, k = 1, 2,... ,d- 1. 

Then the (1, 1, 2) box spline interpolation problem with points X1,... ., X+d is uni- 
solvent if and only if vk 0 Lk, k = 1, 2,... , d, where Lk is the collection of all 
straight lines with slope -1 through grid points on 8k. 

Proof. We order {x',.. .Ixn = {ul,...Iuglv... Ivd} in d groups. For i = 

1,2,... ,d group i contains all grid points on diagonal -6i plus vi. Within each 
group we order from bottom left to top right, i.e., on the sum of the coordinates 
of the points. If the d-ordering is used for the basis functions then the collocation 
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matrix A will be block tridiagonal: 
A1 C1 0 ... 0 ... 

B2 A2 C2 0 

(3.1) A= 0 
: * * . * O0 

Cd-1 
o ... ....0 Bd Ad 

The matrices Bi and Ci contain at most one nonzero row, namely the one corre- 
sponding to vi. If v' is on or above the ith diagonal 6i, then Bi = 0. Similarly, 
Ci = 0 if v' is on or below the ith diagonal 6i. Moreover, assumption (ii) implies 
that at most one of Ci-1 and Bi can be nonzero. For if Ci-1 is nonzero, then vi-1 
is above 6,1, thus vi-l E D_1 n D,. Also, if B, is nonzero, then vi is below 8i 
and hence v' E D_1 n DT. But (ii) implies that at most one of vi-1 and vi is in 
Di-, n D. Hence either Ci-1 or B, must be zero as asserted. 

It follows that A is nonsingular if and only if all the diagonal blocks A1, A2,... , Ad 
are nonsingular. 

Let, for some i, 1 < i < di, .. . ., pk be the interpolation points associated with 
6, and assume v' = pr. The matrix Ai takes the following form, illustrated here for 
k = 10, r = 4, 

1/2 1/2 0 0 0 0 0 0 0 0 
O 1/2 1/2 0 0 0 0 0 0 0 

O O 1/2 1/2 0 0 0 0 0 0 
0 0 a b c 0 0 0 0 0 

Ai = 0 0 0 1/2 1/2 0 0 0 0 0 
0 0 0 0 1/2 1/2 0 0 0 0 
0 0 0 0 0 1/2 1/2 0 0 0 
0 0 0 0 0 0 1/2 1/2 0 0 
0 0 0 0 0 0 0 1/2 1/2 0 
0 0 0 0 0 I0 0 0 1/2 1/2 

where a, b and c are the values of the basis functions which can be nonzero at pr. It 
follows that A, is nonsingular if and only if the 3 x 3 middle block is nonsingular. 
This is equivalent to 

b-a-c 0. 

Now, pr = (u, v) can be in any of four types of triangles as illustrated in Figure 
3.3. Thus, there are four cases to consider. Without loss of generality we assume 
that the origin is at the common vertex of the four triangles. Using Figure 3.1, we 
have 

(i) pr E Ti. In this case, a =2 (U-1)2- _ V2 b (V + 1)2-_U2, and c = 0O so 
that b-a-c = (v-u+1)(v+u). Thus, b-a-c 7 0, except on the line u+v = 0. 

(ii) pr E T2. Now we have a = 2(U -1)2, b = 1- (V-1)2- 1U2, and c = V2. 
It follows that b-a-c = --(U- 1)2 _ (V - 1)2 7 0 for all (u, v) C T2. 

(iii) pr E T3. By symmetry we obtain the same value for b - a - c as in case (ii). 
(iV) pr E T4. We can exchange u and v in case (i) to obtain b - a -c 

(u - v + 1)(u + v). Thus again, b - a - c 0 0, except on the line u + v - 0. 
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(1, 1) 

(0,0) TX 

(0, -1) 

FIGURE 3.3 

The four cases in the proof of Theorem 3.1. 

It follows that Ai is nonsingular if and only if vi is not on the straight lines with 
slope -1 through the grid points of 6,. This completes the proof of the theorem. E1 

We now examine the question of when the matrix A is diagonally dominant. 
Since by (2.3) the elements in each row of A are nonnegative and sum up to one, 
A will be diagonally dominant if the diagonal element is greater than or equal to 
one half. For a (1,1,2) box spline B the set of all points x E R2 where B(x) > 2 

is shown as the region between the two dotted circular curves in the right half 
of Figure 1.2. Suppose Q is as in Figure 1.1, and let BX,... , Bn be the nonzero 
(1,1,2) box splines on Q?. Then the collocation matrix will be (weakly) diagonally 
dominant if xi E Q are such that for i = 1, 2, ... , n 

(3.2) 'E S, {x Q :B,(x) >2} (3.2)~~~~~~~~~~~~~~~~~ 

For a general Q, points xi satisfying (3.2) will not always be distinct. Consider, 
for example, Figure 3.1. Here, S1 = S2 = {(1,0)}, and it is impossible to choose 
distinct x1 and x2 for diagonal dominance. The following theorem restricts Q so 
that diagonal dominance is possible. 

THEOREM 3.2. Let Q be such that kj > O and ku > 0, and denote by B1 X * . *, Bn 
the box splines in I(Q). Suppose x1,... I xnsatisfy (3.2). Moreover, assume that 
for at least one point associated with each diagonal we have xi E = {x E Q? 

Bi(x) > 2}. Then the n x n matrix A = (Bj(xi)) is nonsingular. 

Proof. Since each S, only intersects one diagonal of Q, the matrix A will be block 
tridiagonal of the form (3.1) if the d-ordering is used for B1, . .. , Bn. Moreover, each 
diagonal block A, is tridiagonal of the form 

1/2 1/2 0 ... ... 0 

x x x 

0 x x x 

0 

* ~~~~x x x 

0 ... ... 0 1/2 1/2 

Here, elements marked as x are nonzero. The first and last row of A, must be 
of the form shown, since the first and last grid point on-each diagonal must be 
an interpolation point. Furthermore, we observe that A, has at least 3 rows and 
columns, since k1 > 0 and ku > 0. Finally we observe that Ai is strictly diagonal 
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dominant in at least one row. Thus, A, is an irreducible diagonally dominant 
matrix. By Theorem 1.8 in [12] the matrix Ai is nonsingular. It now follows by 
a standard argument that A itself is nonsingular. Indeed, we note that if all of 
the off-diagonal blocks contain at least one nonzero element, then A will be an 
irreducible diagonally dominant matrix and hence nonsingular. Finally, if one or 
more of the off-diagonal blocks are zero, then A is block triangular and we can test 
for nonsingularity by looking at each diagonal block in the block triangular form. 
Each of these diagonal blocks will in turn be block tridiagonal. a 

Analogous results could also be given for the quadratic box splines (2,1,1) and 

(1,2,1). 

4. A Generalization. In this section we consider a Hermite interpolation 
problem for the box spline (1,1, k), where k E N is given. This box spline is 
piecewise of degree k. It vanishes on all diagonals except one. Using (1.1) and the 
fact that for univariate B-splines 

Mkil(tIO,1,...,k+ 1) = jMk(t-UIO 11...Ik)du, 

we have 

(4.1) B(1,l k) (t, t) = Mk+1 (t I 0, 1, ... ., k + 1). 

Thus, B (1 ,k) is equal to a univariate B-spline of order k + 1 along the interior 
diagonal of its support. 

Suppose Q C R2 is given with d diagonals 61, 62,.. , d. For the box spline with 
m = (1, 1, k) this is also the number of diagonals in I(Q). If p1 and p2 are two 
points on 6,, we say that p1 <p2 if p1 is below p2. Now, for i = 1, 2, ... , d, let 

xil < X i,2 < ..< X%',v, 

be given points on 6, where v, is the number of elements in I(Q) which lie on 8i. 
Let q0,,, j = 1, 2,. . ., vi, be the nonzero box splines on 68 ordered from left to right. 
We define linear functionals A,,,, j = 1, 2, ... , vi, by 

(4.2) Ai,] f = max{ (D1 + D2 )r f (Xj) :xij -T = X1} 
r 

where D1 and D2 denote partial derivatives in the x and y direction, respectively. 
We then have 

THEOREM 4. 1. For i = 1,2, ...2 , d, suppose that at most k of the points x1, 
X2,"" are equal to one value. Then the above problem is unisolvent if and only if 

qij(xiJ) 0 0 for all i, j. 

Proof. We again use the d-ordering. Since each of the 0,,,'s are nonzero only 
over one diagonal, the collocation matrix for the interpolation problem is block 
diagonal 

A = diag(Al, A2,... , Ad), 

where each diagonal block A, is a matrix of order vi with elements 

A7,r9N8, r, s = 1, 2,... , Vt. 

Now on each diagonal we have by (4.1) that q j,1, . .. I are consecutive shifted 
univariate B-splines of order k + 1. By Theorem 4.67 in [11], A, is nonsingular if 
and only if 0qj(xt') 0 0, j= 1,2,...v,. El 
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5. Example. As seen in Table 3.1, the (1,1,2) box spline is a piecewise quadratic 
polynomial where the term xy is missing. In the following example we interpolate 
points on the function f(x, y) = xy using translates of the (1,1,2) box spline as 
basis functions. The error in the approximation gives an indication of how well 
smooth functions can be approximated by C0-quadratic box splines. 

Example 5.1. Given Q as in Figure 1.1, we interpolate f(x,y) = xy on hQ = 

{hx: x E Q} using a grid with spacing h = 1/n and h-translates of the (1,1,2) box 
spline. The interpolation points are on the diagonals midway between grid points. 
In addition, the end points of each diagonal are used. If k, = 0 or ku = 0, we also 
interpolate the end point derivative in the direction along the diagonal. 

FIGURE 5. 1 

The interpolation points and the error in quadratic box spline 
interpolation to f(x, y) = xy on a triangle. 

The situation is illustrated for a triangle (k1 = 0) in Figure 5.1. By Theorem 
4.1 the interpolation problem is unisolvent. The difference f - g, where g is the 
interpolant, is also shown in Figure 5.1. 

In this simple case we have 

(5.1) I1f - gIIL-(hQ) = h 2/8. 

More specifically, on a square with length h divided into two triangles I and u by 
an NE diagonal (cf. Figure 3.1) we have 

(5.2) f(x, y) - g(x, y) = h2(z _ zO)(zO + 1 - z)/2 if (x, y) El, 

where z = (x - y)/h and zo is the difference between the x and y coordinate of 
the lower left corner of the square. (5.2) shows that the error is constant along 
diagonals. (5.1) follows immediately from (5.2). To show (5.2), we note that 
f - g = 0 along each diagonal through grid points. This follows since we are 
doing quadratic spline interpolation to a quadratic along each diagonal. But then 
we can determine g locally on each triangle. We can, for example, interpolate three 
points on the hypotenuse and the value and derivative in the diagonal direction at 
the right-angled corner. It can be verified directly that g defined implicitly by (5.2) 
interpolates f according to these interpolation conditions. Moreover, this g is of 
the form of a quadratic in which the xy term is missing, 

g(x, y) = ax2 + Cy2 + dx + ey +f 

By Table 1, the (1,1,2) box spline is precisely of this form on each triangle. This 
proves (5.2). 0 
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In [6], Theorem 3.2 is applied to interpolate points on a pipe system. Points 
on circles and ellipses corresponding to bends on the pipe system are given. In- 
terpolation points given at a bend correspond to points given on a diagonal in its 
respective domain Q, and a parametric (1,1,2) box spline surface interpolates the 
points. Since the (1,1,2) box spline is discontinuous in the first derivative across 
diagonals, the bend on the pipe system is reproduced. 
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